A posteriori error analysis for conforming MITC elements for Reissner-Mindlin plates

نویسندگان

  • Carsten Carstensen
  • Jun Hu
چکیده

This paper establishes a unified a posteriori error estimator for a large class of conforming finite element methods for the Reissner-Mindlin plate problem. The analysis is based on some assumption (H) on the consistency of the reduction integration to avoid shear locking. The reliable and efficient a posteriori error estimator is robust in the sense that the reliability and efficiency constants are independent of the plate thickness t. The presented analysis applies to all conforming MITC elements and all conforming finite element methods without reduced integration from the literature.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Posteriori Error Analysis of Finite Element Methods for Reissner-Mindlin Plates

This paper establishes a very general theory for a posteriori error analysis of finite element methods of the Reissner-Mindlin plate problem in the literature. The theory assures reliability of explicit residual error estimates. The conclusion of this theory is sparsity in the mathematical research of uniform a posteriori error control. Indeed, the a posteriori error estimate for various finite...

متن کامل

Robust equilibrated a posteriori error estimators for the Reissner-Mindlin system

We consider a conforming finite element approximation of the Reissner-Mindlin system. We propose a new robust a posteriori error estimator based on H(div ) conforming finite elements and equilibrated fluxes. It is shown that this estimator gives rise to an upper bound where the constant is one up to higher order terms. Lower bounds can also be established with constants depending on the shape r...

متن کامل

Robust residual a posteriori error estimators for the Reissner-Mindlin eigenvalues system

We consider a conforming finite element approximation of the Reissner-Mindlin eigenvalue system, for which a robust a posteriori error estimator for the eigenvector and the eigenvalue errors is proposed. For that purpose, we first perform a robust a priori error analysis without strong regularity assumption. Upper and lower bounds are then obtained up to higher order terms that are superconverg...

متن کامل

Analysis for quadrilateral MITC elements for the Reissner-Mindlin plate problem

The present paper is made up of two parts. In the first part, we study the mathematical stability and convergence of the quadrilateral MITC elements for the Reissner-Mindlin plate problem in an abstract setting. We generalize the Brezzi-Bathe-Fortin conditions to the quadrilateral MITC elements by weakening the second and fourth conditions. Under these conditions, we show the well-posedness of ...

متن کامل

Robust BDDC Preconditioners for Reissner-Mindlin Plate Bending Problems and MITC Elements

A Balancing Domain Decomposition Method by Constraints (BDDC) is constructed and analyzed for the Reissner-Mindlin plate bending problem discretized with MITC finite elements. This BDDC algorithm is based on selecting the plate rotations and deflection degrees of freedom at the subdomain vertices as primal continuity constraints. After the implicit elimination of the interior degrees of freedom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Comput.

دوره 77  شماره 

صفحات  -

تاریخ انتشار 2008